If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+16=116x
We move all terms to the left:
24x^2+16-(116x)=0
a = 24; b = -116; c = +16;
Δ = b2-4ac
Δ = -1162-4·24·16
Δ = 11920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11920}=\sqrt{16*745}=\sqrt{16}*\sqrt{745}=4\sqrt{745}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-116)-4\sqrt{745}}{2*24}=\frac{116-4\sqrt{745}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-116)+4\sqrt{745}}{2*24}=\frac{116+4\sqrt{745}}{48} $
| h+28=-35 | | 60n=48n+48 | | 5a-13=3a+3 | | 4x2-256=0 | | 2,5x-100=40 | | r-8.8=-8.5 | | 4x+x-4=56 | | 3x2-30x=-63 | | 6x+20=110-4x | | x2=2250 | | 0.50x+5=x-1 | | (5/7)x-x=14 | | (e+1)5=30 | | 2r+20=420 | | 7/10x-0=7 | | 60n=48n×48 | | 5^x=0,2 | | 17=u/3-9 | | 400-20x=200+30x | | z÷7-1=4 | | 1/2x+5=x-1 | | (q-6)5=35 | | 9x-3=4x-6 | | w/10=2/4 | | Y=3x2-11x+6 | | 2x-(x+2)=2x-x-2 | | 6x^2+51x+100=0 | | 6=x/5-15 | | -4x=6+34 | | u/4-12=18 | | 6x^2+8x+15=0 | | 3/5k-1/2=1/7 |